2024-08-26
Abstract: Hydrogenii productio aaquam electrolysisPotest convertere magna-scale renewable navitas in viridi hydrogenii, quae late usus est varietate humilis-carbonis terminationem industria fontes, ut cibus, eget industria et translationem, et magni momenti ad ipsum reductionem et magni momentum ad ipsum reductionem. Ut a technology cum maxime potentiale et magna-scale applicationem, alkaline aquam electrolysis ad hydrogenii productio occupat dominans situ in aquam electrolysis industria. Ex ad reducendo in overpotentialis hydrogenii productio per electrolysis, in perficientur de diaphragma et Anode Electrode materiae studuit. Eventus ostendere quod Polymer Composita Diaphragm Zirfon habet inferioribusmembrana Resistentia quam polyether sulfide non-textile fabricae, quae potest reducere overpotentialis aqua electrolysis per plus quam 0.3v. Hoc est maxime quod zirfon diaphragma habet inferioribus membrana resistentia et altius hydrophilicity, et hydrophilicity diaphragmas erit afficit ad usum rate of the electrode activa sites. In altiorem hydrophilicity, in inferioribus activation impeditance in Stack. Per comparet ad perficientur nickel reticulum et nickel spumam, quod reperitur quod resistentia de Nickel reticulum cum usus est anode Electrode est inferior, quam de nickel spumam, et habet inferioribus overpotaquam electrolysis. Potest providere quaedam referat ad optimization de diaphragma et electrode, key components de electrolyzer et conducit ad reducendo sumptus electrolysis.
0 Introduction
Hydrogenii industria habet commoda nulla pollutio, princeps calorific valorem, stori et late et late application. Aqua electrolysis technology potest utor renewable industria et fluctuans superplus electricity ad producendum hydrogenii, quae consideretur esse maxime idealis et environmentally amica via ad producendum hydrogenii. Ideo progressionem Renewable industria aqua electrolysis hydrogenii productio est magni momenti ad industria securitatem et ipsum dioxide emissionem reductionem. However, currently only 4% of the world's hydrogen comes from water electrolysis, mainly due to the high cost of water electrolysis hydrogen production, among which power consumption and electrolyzer costs are bottlenecks restricting its large-scale application. Pulsa per "Dual Carbon" finis, in progressionem renovabili industria potentia generationem technology non necesse ducunt ad ulteriorem reductionibus in electricity prices et facti potens catalyst in progressionem aquae electrolysis hydrogenii productio industria. Alkaline aquam electrolysis hydrogenium productio technology habet attracted multum operam ex suum commoda ut humilis sumptus, longa vita et abundat materia fontes, et ejus convenientia pro magna-scale hydrogenii productio. Tamen, in magna-scale hydrogenii productionem application missione, in current density et industria efficientiam de alkaline aquam electrolysis technology adhuc opus est ultra meliorem, et diaphragma et electrode materiae ut key components ludere an maximus in hoc.
In perficientur de diaphragmas in alkalineaquam electrolysisMagna potentia in virtute consummatio electrolyzer et puritatem hydrogenii produci. In primis diebus, in diaphragma in alkaline aquam electrolysis ad producendum hydrogenii asbesto. Ob salutem et salus exitibus, quod paulatim reponi a Polyphenenene sulfide (PPS) non-textile, sed ad Gas obice effectus PPS non-textilia etiam necessitates esse amplius emendare ad amplio in emundationem usque ad adhuc melius est meliori ad emendationem usque ad meliorem. In annis, populus studuit varietate materiae ut adipisci diaphragms cum low resistentia et bonum hydrophilicity et Gas obice facultatem. Studiis sunt organicum polymers et compositum membranas, ut Polysulfone diaphragms, Polyether diaphragms, polytetrafluoroethylene diaphragms, pps diaphragms, etc.
In electrode est locus ubi electrocatytic reactionem fit et est core pars electrolyzer. Et perficientur directe afficit overpotentialis aqua electrolysis et quoque unus ex key factors restringens operationem alkalineaquam electrolysisad producendum hydrogenii ad excelsum current density. In anode est rate-determinandum gradus electrolysis reactionem, et electrode oxygeni evolutionis actio est praecipue momenti ad totius electrolysis reactionem. Traditional Alkaline Electrolyers utor Nickel Mesh ut anode Electrode quod Nickel reticulum habet idoneam electrolytic operatio, bonum corrosio resistentia et humilis sumptus. Ut adhuc amplio perficientur de anode, electrode materiae cum princeps operatio et magnis superficies aream facti unum momenti investigationis directiones. Exempli gratia, nickel spumam, nickel-fundatur Alloys, oxides, spinels, perovskite-genus oxides, etc. fuisse late studied. Hoc chartam studiis effectis duo clavis materiae, in septo et anode Electrode, in electrolysis perficientur, revelat momenti diaphragmensis crassitiem et hydrophilicity, et nickel spumam in perficientur de Nickel et ad effectum ad anode materiae, ut providebit in progressionem et optimization of Nickel materiae et pro progressionem et ad modum, ut providere ad progressionem et optimization of Materials pro Alkalineaquam electrolysis.
I. Experimentum
1.1 experimentum materiae
Et electrolytici usus est in experimentum composito ex analytica pura Koh et ultrapure aqua (18.2Mω); Et Cathode Electrode est a Romne Nickel Mesh (0.50mm); Et Anode Electrode est Nickel reticulum (0.50mm) et nickel spumam diversorum crassitudines; Et diaphragma materiae sunt PPS non-textile fabricae et polymer compositum membranam (Agfa, zirfon membranam).
1.2 experimentalem modum
1.2.1 membrana resistentia test
In membrana resistentia est adeptus per temptationem alterna current impedirentance (eis) per an electrochemical workstation (Princeton, Model P4000A). Et Eis test peragitur in plexiglass conductivity cellula cum Graphite laminam sicut electrode et electrode spacing of 1.90cm. Test est ad locus temperatus cum Koh solutio XXX% per Missam sicut electrolytici. Omnes diaphragms sunt inebriabitur in XXX% Koh ad I hora ante tentat. Motet voltage erat 10mv, frequency range est 0.1 20000.0hz, et resistentia pretii correspondens ad excelsum frequency capta est membrana resistentia. Quisque diaphragma sample erat probata in parallel III temporibus.
1.2.2 Una Cell Electrolysis
In perficientur test de diaphragma et electrode fuit ferri ex uno electrolytic cellulam cum efficax reactionem area de 25cm2. Et una electrolytic cell maxime consistit de polytetrafluoroethylene finem laminam, immaculatam ferro bipolar laminam, a cathode et cathode electrodes, diaphragma et polytetafluoroethylene gasket. In XXX% Koh electrolyte erat preheated in constant temperatus aqua balneum et transivit in unum electrolytic cellula per peristallicus sentinam. Et DC potentia Supple (It6502D80v / 60A / 800W) provisum est 10A current pro constant current electrolysis. Per electrolysis processus, temperatus in unum electrolytic cell stabilized ad LXXX ℃. A resistentia meter est ad monitor resistentiam de uno electrolytic cellula durante constant current electrolysis.
1.2.3 Una Electrolytic cell impeditance test
Post voltage de uno electrolytic cell constantes current electrolysis test fuit firmum, in unum electrolytic cellula subederint Eis test. In perturbatione current est ad 1.0a, et test frequency range fuit 0.1 ~ 10000.0hz. Imminedance RS et arguere translationem impedimentiis RCT de altilium sub operando condiciones adeptus a decet impeditance spectro.
1.3 structural proprium
Et scanning Electron microscope (Sem) imagines in diaphragmate et anode materiae sunt probata in agro egreditur elementum electa microscopio (Zeiss-ultra-plus, Zeiss, Germaniae).
II. Results et disputationem
2.1 characterization et analysis de diversis diaphragms
Diaphragma in electrolyzer separat anode et cathode laminis ne brevis circuitus et segregare mixtionem hydrogenii et oxygeni. Crassitudine, hydrophilicity, poros et pie mole sunt propinqua ad electrolysis perficientur et quoque habent momenti influentiam in puritate hydrogenii.
Et crassitudo, Porosity, aere permeability et membrana resistentia diversis diaphragmata sunt comparari in mensa I. Sicut ostensum est in mensa I, in crassitudine zirfon500 sunt circa D et LV% et zirfon500 est LX% et LV et zirfon500 est LX% et LV et Zirfon500 est LX% et LV et Zirfon500 et LV% et LV et Zirfon500 est LX% et LV et Zirfon500 et LV% et LV et Zirfon500 est LX% et LV. Aeris permeability duorum zirfon membranae est comparabile.
Et superficies morphologia de diaphragma est porro propria, ut ostensum est in Figura I. Et Zirfon membrana est composito ex mesh polyphenelene sulfide fabricae, in superficies quod est ad emendare et inonganee zro2 quod adjuvat ad amplio in hydrophilicity in membranam. In sem eventus ostendere quod superficies Zirfon habet irregulariter pie structuram de decem ad centum nanometers. In PPS non-textile fabricae est texta micron-amplitudo fibris et micron-amplitudo hiatus, quae significantly maior quam zirfon membrana. Potest esse Zirfon500 + et Zirfon500 habere commoda tenuior crassitudine, altior hydrophilicity et minor pore mole.
In membrana resistentia test eventus ostendere quod zirfon500 + habet ad lowest membrana resistentia (72mω), sequitur zirfon500 (283mω) et membrana resistentia PPS non-textile fabricae est maxima (571mω). Et membrana resistentia Zirfon500 + et Zirfon500 est 12,6% et 49.6% of ut PPS non-textile fabricae, respective. Hoc est ad tenuior crassitudine Zirfon500 + et Zirfon500 diaphragms et meliori hydrophilicity onusto inorganicis cadmiae Zro2.
2.2 Aquam electrolysisperficientur diversis diaphragms
2.2.1 Constant current electrolysis
Three diaphragms were used for alkaline water electrolysis, and the test results are shown in Figure 2. Under the same test conditions, when the current density was 0.4A/cm2, the voltage of the single electrolytic cell was 2.32V for PPS non-woven fabric, 1.98V for Zirfon500, and 1.94V for Zirfon500+. Resistentia de uno electrolytic cellulis cum diversis diaphragms sub superius operating conditionibus esse metiri 15.92, 9.06 et 8.28Mω, respectively. Eam inventa est quod electrolysis voltage et resistentia habere consistent exemplar.
Et Imminedance of Una cellulis cum diversis diaphragms erat ulterius investigari. De ordine magnitudinis erat PPS nonwoven fabricae> zirfon500> zirfon500 +, quae verificatur per eventus resistentia. Resistentia vel impedire unius electrolytic cellulis diversis diaphragms per electrolysis est propinqua ad membranam resistentia. In eodem tempore, ordine magnitudinis activation impeditance erat PPS nonwoven fabricae> zirfon500≈zirfon500 +. In activation impeditance est ad crimen translationem de redox reactionem in electrolysis, significans quod Zirfon membrana habet altiorem crimen transitum efficientiam quam PPS nonwoven fabricae.
Electrolytic cellulis cum tribus genera diaphragms uti eadem electrode materia, sed activation impedire differt. Hoc potest esse quod hydrophilicity de PPS diaphragma est peius quam ut Zirfon membrana, quae facit difficile ad bullae ad desorb, ita occupantem in reactionem sites electrode, unde in decrementum in ipsa reactionem area de electrode.
Et overpotential de una electrolytic cellula cum zirfon500 et zirfon500 + quod diaphragms reducitur per 14.7% et 16,4% respectively comparari cum PPS non-texta diaphragma. Combined cum prior characterization et analysis de diaphragma structuram et characteres, quod potest esse videtur quod reductionem in overpotential est maxime debitum ad reductionem in diaphragmas crassitudine et emendationem hydrophilicity.
In addition, during the test, it was found that the alkali solution between the cathode and cathode was significantly offset when the PPS non-woven fabric with a larger pore size was used as the diaphragm, while the alkali solution had no obvious offset when Zirfon was used as the diaphragm, indicating that Zirfon as a diaphragm can reduce the cross-gas between the cathode and cathode, which will help improve gas Puritas et salus. Et electrolysis voltage of electrolytic cellulis cum diversis diaphragms (0.4a / cm2) est ostensum est in Figura II. Nyquist insidiamini de electrolytic cellulis cum diversis diaphragms (0.4a / CM2) ostenditur in Figura III.
2.2.2 polarization curvas diversis diaphragms
Et electrolysis voltage of electrolytic cellulis cum diversis diaphragms ad diversum current densities est ostensum est in Figura IV.
Cum current densitas est 0.2a / CM2, electrolysis voltages de electrolytic cellulis cum PPS nonwoven fabricae, zirfon500 et zirfon500 + diaphragma sunt 2.09, 1.84 et 1.80V respective post stabilitatem. Cum current densitate crescit ad 0.4a / cm2, electrolysis voltages de electrolytic cellulis cum PPS nonwoved fabricae, zirfon500 et zirfon500 + diaphragm auget a 140mv comparari cum voltage in electrolyticum in PPS nonwoved cum ad diaphragmam crescit a 230mv cum in voltage in diaphragmatica crescit 230mv cum in voltage in diaphragmam crescit a 230mv cum in voltage of the diaphragmam crescit 230mv cum in voltage of the diaphragmatica crescit in 230mv cum in voltage in diaphragmatica crescit in 230mv. Praeterea augendae ad current density ad 0.6a / CM2, quod est inventus quod voltage of the electrolytic cellula cum zirfon500 et zirfon500 + sicut diaphragma crescit a 120mv comparari cum current densitate 0.4a / CM2, quod est minus quam 180mv de PPS nonwoven fabricae. In general, with the increase of current density, the overpotential of Zirfon500 and Zirfon500+ diaphragms basically shows a linear increase trend, while the overpotential of PPS non-woven fabric increases greatly at high current density, which may be related to its poor surface hydrophilicity, resulting in the inability of bubbles to desorb in time. Igitur hydrophilicity alkaline aquam electrolysis diaphragms habet momenti auctoritas in meliorem current density et electrolysis industria efficientiam.
2.3 aqua electrolysis perficientur diversis anode materiae
Et Morphologia de Nickel spumam et Nickel reticulum est proprium, et voltage de electrolytic cellula ad diversas current densities (0.4a / CM2 est in mesh magnitudinem de 250μm.
The nickel foam of different thicknesses was used as the anode electrode, Zirfon500+ was used as the diaphragm, and the alkaline water electrolysis hydrogen production was compared with the nickel mesh as the anode, and its performance is shown in Figure 6. It was found that for the electrolytic cell with the same thickness of 0.50mm anode, when the nickel mesh was used as the anode, the voltage erat 1.94v, quod erat inferior quam 1.95V de nickel spumam; Cum nickel retardatus est usus ut anode, resistentia erat 8.28Mω, quod erat inferior quam 11.63Mω of Nickel spumam. It is speculated that this is because the small pore structure of nickel foam determines that the gas bubbles produced when it is used as an electrode are smaller, and when the electrolysis voltage is higher, the critical diameter of bubble desorption is larger, so that the bubble stays at the electrode interface for a longer time, resulting in increased resistance. Insuper et crassius nickel spumam, inferior electrolysis voltage. Cum crassitudine nickel spumam decrescit a 0,50 mm ad 0.15 mm, electrolysis voltage auget ex 1,95 V ad 1.97 V et resistentia crescit ex 11.63Mω ad 14.97Mω. Combined cum suis alicuis structuram analysis, potest esse quod causa est quod crassius nickel spumam, maior poris et maior electrode superficies providet.
III. Conclusiones
Haec charta studiis effectis diversis diaphragms in perficientur aqua electrolysis per combining eorum structurae et characteres. Est invenitur, quod Polymer composita diaphragmata potest consequi inferioribus overpotentials ad aquam electrolysis quam polymer non-textilia ex eorum inferioribus membrana resistentia et melior hydrophilicity.
In addition, ex scrutandis effectis diversis anode Electrode materiae in electrolysis perficientur, quod est inventus quod nickel retia potest consequi inferioribus overpotentials pro electrolysis quam nickel spumam, quae ad suum inferioribus resistentia. In alkaline aqua electrolysis, diaphragms et electrodes sunt clavis materiae, quae afficiunt overpotentials. Optimizing diaphragma et electrode materiae est magni momenti in reducendo overpotentials ad aquam electrolysis.